12T/H Ultraviolet Water Sterilizer For Water Purification
Ultraviolet sterilization (UV) is a process to eliminate biological contamination, namely
parasite fungus and bacteria. Two types are commercially available, both in tube size.
Generally the one containing a wet bulb -at which the water passes directly past the UV bulb- is cheaper.
The other type available has a protective quartz tube around the bulb (dry bulb). The latter has the advantage of easier cleaning, since debris and slime will eventually settle on the
bulb, or quartz surrounding. Both work on the same principle.
UV sterilization exposes the contaminants with a lethal dose of energy in the form of light.
The UV light will alter the DNA of the pathogens, by virtually gluing DNA molecules together. The changed cell structure prevents the organism from reproducing itself (sterilization), therefore eliminating it.
Limitation of Use
The UV water disinfection system NOT intended for the treatment of water that has an obvious contamination or intentional source, such as raw sewage, nor is the unit intended to convert wastewater to microbiologically safe drinking water.
Water Quality (in)
Water quality plays a major role in the transmission of germicidal UV rays. It is recommended that the water does not exceed following maximum concentration levels
Maximum Concentration Levels (Very Important)
Iron≤ 0.3ppm(0.3mg/L)
Hardness≤ 7gpg(120mg/L)
Turbidity≤ 1NTU
Manganese≤ 0.05ppm(0.05mg/L)
Tannins≤ 0.1ppm(0.3mg/L)
UV Transmittance≥ 750‰
Effectively treating water with higher concentration levels than listed above can be accomplished, but may require added measures to improve water quality to treatable levels. If, for any reason, it is believed the UV transmission is not satisfactory, contact the factory.
UV wavelength (nm)
DOSAGE is the product of intensity & time
Dosage=intensity*time=micro watt/cm2*time=microwatt-seconds per square centimeter
(μ W-s/cm2)
Note: 1000μ W-s/cm2=1mj/cm2(milli-joule/cm2)
As a general guideline, the following are some typical UV transmission rates (UVT)
City water supplies850-980‰
De-ionized or Reverse Osmosis water950-980‰
Surface waters(lakes, rivers, etc)700-900‰
Ground water(wells)900-950‰
Other liquids10-990‰
Technical Parameters:
model |
Processing capacity (Ton/Hour) |
power (W) |
inlet and outlet
(inch) |
working pressure (Kg/cm 2 ) |
malfunction alert for UV lamp |
reactor dimension (cm) L×W×H |
dimension of panel(cm) |
anchor bolt (cm) |
overall weight (Kg) |
YLCn-005 |
0.3 |
16 |
1/2" |
6 |
matched |
30×6×11 |
|
|
5 |
YLCn-008 |
1 |
25 |
1/2" |
6 |
matched |
47×6.3×11 |
|
|
10 |
YLCn-050 |
2 |
40 |
1" |
6 |
matched |
100×9×20 |
Φ8.9×25
(diameter×length) |
69×4×Φ1 |
25 |
YLCn-150 |
6 |
80 |
1+1/4" |
6 |
matched |
100×11×23 |
69×4×Φ1 |
30 |
YLCn-200 |
8 |
120 |
1+1/2" |
6 |
matched |
100×15.9×30 |
Φ8.9×45
(diameter×length) |
69×7×Φ1 |
35 |
YLCn-300 |
12 |
160 |
2" |
6 |
matched |
100×15.9×32 |
69×7×Φ1 |
40 |
YLC-050 |
2 |
40 |
DN25/1" |
6 |
matched |
100×8.9×30 |
25×30×12
(L×H×w) |
60×4×Φ1 |
45 |
YLC-150 |
6 |
80 |
DN32/1 1/4 " |
6 |
matched |
100×10.8×30 |
60×4×Φ1 |
50 |
YLC-200 |
8 |
120 |
DN40/1 1/2 " |
6 |
matched |
100×15.9×40 |
60×7×Φ1 |
60 |
YLC-300 |
12 |
160 |
DN50/2" |
6 |
matched |
100×15.9×40 |
60×7×Φ1 |
70 |
YLC-360 |
15 |
200 |
DN65/2 1/2" |
6 |
matched |
100×15.9×40 |
50×78×25
(L×H×W) |
60×7×Φ1 |
120 |
YLC-500 |
20 |
240 |
DN65/2 1/2" |
6 |
matched |
100×21.9×50 |
60×11×Φ1.2 |
130 |
YLC-600 |
25 |
280 |
DN80/3" |
6 |
matched |
100×21.9×50 |
60×11×Φ1.2 |
140 |
YLC-700 |
30 |
320 |
DN100/4" |
6 |
matched |
100×21.9×50 |
60×11×Φ1.2 |
150 |
YLC-1000 |
40 |
360 |
DN100/4" |
6 |
matched |
100×21.9×50 |
60×11×Φ1.2 |
160 |
YLC-1200 |
50 |
400 |
DN125/5" |
6 |
matched |
100×21.9×50 |
60×11×Φ1.2 |
180 |
YLC-1500 |
60 |
420 |
DN150/6" |
6 |
matched |
170×27.3×57 |
120×16×Φ1.4 |
210 |
YLC-2000 |
80 |
560 |
DN150/6" |
6 |
matched |
170×27.3×57 |
120×16×Φ1.4 |
220 |
YLC-2500 |
100 |
700 |
DN150/6" |
6 |
matched |
170×27.3×57 |
60×128×30
(W×H×T)
|
120×16×Φ1.4 |
275 |
YLC-3000 |
125 |
840 |
DN150/6" |
6 |
matched |
173×27.3×57 |
120×16×Φ1.4 |
300 |
YLC-4000 |
150 |
1120 |
DN200/8" |
6 |
matched |
173×32.5×65 |
120×20×Φ1.6 |
325 |
YLC-5000 |
200 |
1400 |
DN200/8" |
6 |
matched |
173×37.7×72 |
120×22×Φ1.6 |
350 |
YLC-7000 |
300 |
2100 |
DN250/10" |
6 |
matched |
175×42.6×80 |
120×24×Φ2.0 |
400 |
YLC-10K |
400 |
2520 |
DN250/10" |
6 |
matched |
176×52.9×95 |
60×150×40
(W×H×T) |
120×28×Φ2.2 |
475 |
YLC-15K |
600 |
3080 |
DN300/12" |
6 |
matched |
176×78×110 |
120×32×Φ2.4 |
600 |
YLC-20K |
800 |
3920 |
DN350/14" |
6 |
matched |
confirmed |
confirmed |
confirmed |
confirmed |
YLC-25K |
1000 |
4760 |
DN350/14" |
6 |
matched |
confirmed |
confirmed |
confirmed |
UV Disinfection Systems Application
1. Food processing and industrial water disinfection
2. Hospitals, various laboratory water disinfection, and high levels of pathogenic water disinfection
3. Municipal water
4. Biochemical pharmaceutical, cosmetics production water disinfection
5. Aquatic products processing water disinfection
6. Swimming pool water disinfection
7. Seawater, freshwater aquaculture breeding water disinfection
8. Ultra-pure water for electronic industry, and so on
Principle of Operation
UV water disinfection system design has been carefully conceived to provide adequate germicidal dosage throughout the disinfection chamber. The dosage, as it applies to UV disinfection, is a function of time and the intensity of UV radiation to which the water is exposed. Exposure time is related to the flow rate, the higher the flow rate, the lower the exposure time or the lower the flow rate, the higher the exposure time. The UV intensity is the amount of energy, per unit time, emitted by germicidal lamp. The Dosage is the product of UV intensity and the exposure time.
Workshop photo:
Frequently Asked Questions About Ultraviolet (UV) Purification
1. What is UV?
Ultraviolet (UV) light is at the invisible, violet end of the light spectrum. Even though we can't see UV light, we are exposed to UV rays from all light sources, including the sun.
2. How does ultraviolet light purify water?
UV-C rays penetrate the cells of harmful bacteria and viruses in our drinking water, destroying their ability to reproduce. Without this ability, these organisms die and no longer pose a health threat. It is a simple but very effective process, with the system destroying 99.99% of harmful microorganisms.
3. Why not use chlorine instead?
Chlorine changes the taste and odor of water. Chlorinating also produces harmful by-products called Trihalomethanes (THMs) which are linked to incidence of cancer.
4. Does a UV system use a lot of energy?
No, the UV unit will use about the same amount of energy as a 60 watt light bulb. It is a cost effective, natural way to increase water quality.
5. Why do UV purifiers require sediment pre-filtration?
UV systems require pre-filtration to maintain effectiveness as sediment and other contaminants in the water can create a "shadow" which prevents the UV rays from reaching and disinfecting the harmful microorganisms.
6. How often does the UV light bulb (lamp) need to be replaced?
It is essential that you change your UV lamp annually. The ability of the lamp to emit UV light decreases over one year in operation. Remember - UV light is invisible! Even though the lamp is still glowing after one year, there might not be enough UV light reaching your water to be effective.
7. How often do your need to replace the sleeve?
The sleeve doesn't need to be replaced unless it is broken, but it will need to be cleaned several times a year in order to keep the bulb effective in delivering high water quality.