UV Sterilizers
UV sterilization is a safe and natural method to reduce waterborne pathogens and algae the causes ?Green Water?. UV is as natural as sunlight. Unlike chemical treatments that can potentially harm the fish, beneficial bacteria, and plants in your aquarium or pond, UV does not leave any residuals in the water and therefore cannot harm fish and plants.
A UV sterilizer works in harmony with other essential filters by eliminating nuisance green water caused by waterborne algae that can easily create problems and ultimately reduce filter efficiency.
UV sterilizers will not kill a parasite on the fish, but parasites go through a free floating stage, at which point they are eliminated by the sterilizer. Additionally, corals and fish can and do carry bacteria which can infect and spread throughout the tank, killing other inhabitants.
The initial thinking on reef tanks was to avoid UV sterilizers to keep plankton alive. However, with the skimmers and pumps used on aquariums the plankton population in the water column is virtually non existent. You can use pond sterilizers continuously (recommended) or just keep one at the ready, in the event of an outbreak.
Introduction
A UV sterilizer is used to control infections by stopping the spread of microorganisms from one fish/coral/invertebrate to another through the water. It is also used in pond applications to control free-floating algae. When operated correctly, free-floating microorganisms will be killed by the UV light. Note that the organisms must be in the water that flows to the UV sterilizer. The UV light has no residual effect and will not kill organisms attached to fish (e.g., adult stage of ich) or rocks (e.g., algae).
Working principle
The UV sterilizer utilizes a germicidal fluorescent lamp that produces light at a wavelength of approximately 254 nanometers (253.7 Angstroms). The water with the bacteria/algae passes over the bulb (or around the bulb if a quartz sleeve is used) and is irradiated with this wavelength. As the light penetrates the bacteria/algae, it mutates the DNA (genetic material), preventing growth/multiplication of the organism.
Application
1.Food processing industry, including juices, milk, drinks, beer, practical oil and canned food.
2.Electronic industry.
3.Hospitals, various laboratory and high levels of pathogenic body water disinfection.
4.Households building, residential, office buildings, hotels, restaurants, water factories.
5.Purification and disinfection of shellfish, fish cleaning and disinfection
6.Military camp, field water supply system
7.Urban wastewater disinfection.
8.Swimming pool, other recreational water disinfection
9.Thermal power, nuclear power plant industrial, central air conditioning system cooling water.
10.Biological, chemical and pharmaceutical, cosmetics for the production of cooling water.
11.Sea water, fresh water breeding, aquaculture water
12.Agricultural water disinfection
UV specification
Product application
Ultraviolet light treatment is a widely recognized and proven method of disinfection of water and has several advantage over other disinfection methods such as chlorination, ozonation, etc.UV light does not add anything to the water ,such as ,undesirable color ,odor , taste , or flavor ,nor does it generate harmful byproducts. It adds only energy in the UV radiation. Also, UV disinfection requires only a fraction of the contact times required by other disinfection methods. It is fast, efficient, effective, economical and environmentally-friendly.
Principle of Operation
UV water disinfection system design has been carefully conceived to provide adequate germicidal dosage throughout the disinfection chamber. The dosage, as it applies to UV disinfection, is a function of time and the intensity of UV radiation to which the water is exposed. Exposure time is related to the flow rate, the higher the flow rate, the lower the exposure time or the lower the flow rate, the higher the exposure time. The UV intensity is the amount of energy, per unit time, emitted by germicidal lamp. The Dosage is the product of UV intensity and the exposure time.
Limitation of Use
The UV water disinfection system NOT intended for the treatment of water that has an obvious contamination or intentional source, such as raw sewage, nor is the unit intended to convert wastewater to microbiologically safe drinking water.
Water Quality (in)
Water quality plays a major role in the transmission of germicidal UV rays. It is recommended that the water does not exceed following maximum concentration levels
Effectively treating water with higher concentration levels than listed above can be accomplished, but may require added measures to improve water quality to treatable levels. If, for any reason, it is believed the UV transmission is not satisfactory, contact the factory.
UV wavelength (nm)
DOSAGE is the product of intensity & time
dosage=intensity*time=micro watt/cm2*time=microwatt-seconds per square centimeter
(μW-s/cm2)
Note:1000μW-s/cm2=1mj/cm2(milli-joule/cm2)
Technical parameters sheet
model |
capacity |
Power |
inlet-outlet |
reactor |
panel |
Anchor |
G weight |
|
m³/hour |
watt |
mm |
L×W×H |
|
screw |
Kg |
YLCn-005 |
0.3 |
16 |
1/2″ |
30×6×11 |
|
|
5 |
YLCn-008 |
1 |
25 |
1/2″ |
47×6.3×11 |
|
|
10 |
YLCn-050 |
2 |
40 |
1″ |
100×9×20 |
Φ8.9×25
(d×L) |
69×4×Φ1 |
25 |
YLCn-150 |
6 |
80 |
1+1/4″ |
100×11×23 |
|
×Φ1 |
30 |
YLCn-200 |
8 |
120 |
1+1/2″ |
100×15.9×30 |
Φ8.9×45
(d×L) |
69×7×Φ1 |
35 |
YLCn-300 |
12 |
160 |
2″ |
100×15.9×32 |
|
69×7×Φ1 |
40 |
YLC-050 |
2 |
40 |
DN25/1″ |
100×8.9×30 |
25×30×12
(W×H×D) |
60×4×Φ1 |
45 |
YLC-150 |
6 |
80 |
DN32/11/4″ |
100×10.8×30 |
|
60×4×Φ1 |
50 |
YLC-200 |
8 |
120 |
DN40/11/2″ |
× |
|
60×7×Φ1 |
60 |
YLC-300 |
12 |
160 |
DN50/2″ |
100×15.9×40 |
|
×Φ1 |
70 |
YLC-360 |
15 |
200 |
DN65/21/2″ |
100×15.9×40 |
|
60×7×Φ1 |
120 |
YLC-500 |
20 |
240 |
DN65/21/2″ |
× |
|
60×11×Φ1.2 |
130 |
YLC-600 |
25 |
280 |
DN80/3″ |
100×21.9×50 |
|
60×11×Φ1.2 |
140 |
YLC-700 |
30 |
320 |
DN100/4″ |
100×21.9×50 |
|
60×11×Φ1.2 |
150 |
YLC-1000 |
40 |
360 |
DN100/4″ |
100×21.9×50 |
|
×Φ1.2 |
160 |
YLC-1200 |
50 |
400 |
DN125/5″ |
100×21.9×50 |
|
60×11×Φ1.2 |
180 |
YLC-1500 |
60 |
420 |
″ |
× |
|
120×16×Φ1.4 |
210 |
YLC-2000 |
80 |
560 |
DN150/6″ |
170×27.3×57 |
|
120×16×Φ1.4 |
220 |
YLC-2500 |
100 |
700 |
DN150/6″ |
170×27.3×57 |
60×128×30
× |
120×16×Φ1.4 |
275 |
YLC-3000 |
125 |
840 |
DN150/6″ |
170×27.3×57 |
|
120×16×Φ1.4 |
300 |
YLC-4000 |
150 |
1120 |
DN200/8″ |
173×32.5×65 |
|
120×20×Φ1.6 |
325 |
YLC-5000 |
200 |
1400 |
DN200/8″ |
173×37.7×72 |
|
120×22×Φ1.6 |
350 |
YLC-7000 |
300 |
2100 |
″ |
175×42.6×80 |
|
120×24×Φ2.0 |
400 |
YLC-10K |
400 |
2520 |
DN250/10″ |
176×52.9×95 |
60×150×40
× |
120×22×Φ2.2 |
475 |
YLC-15K |
600 |
3080 |
DN300/12″ |
176×78×110 |
|
120×32×Φ2.4 |
600 |
YLC-20K |
800 |
3920 |
″ |
Designated |
Designated |
Designated |
Designated |
YLC-25K |
1000 |
4760 |
DN350/14″ |
Designated |
Designated |
Designated |
Designated |